If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+6x-160=0
a = 4; b = 6; c = -160;
Δ = b2-4ac
Δ = 62-4·4·(-160)
Δ = 2596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2596}=\sqrt{4*649}=\sqrt{4}*\sqrt{649}=2\sqrt{649}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{649}}{2*4}=\frac{-6-2\sqrt{649}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{649}}{2*4}=\frac{-6+2\sqrt{649}}{8} $
| 50x=60x-20 | | 5x+x+30=150 | | 6x-3/2-162=0 | | 3=5+-5/4y | | 34=9m=3m | | 1/7+3/7(3x-5=-4 | | 3m^2-7m+1=0 | | –7+8n+11n=19n−7 | | 8x+1+3x=5x+1 | | -2(-8x+8)-5x=-93 | | -2(-8x+8)-5x=-93 | | 30=(3x) | | 30=(3x) | | 30=(3x) | | 30=(3x) | | 30=(3x) | | 30=(3x) | | 30=(3x) | | -5d+9d=-27 | | x=0x(1x) | | -5d+9d=-27 | | x=0x(1x) | | 30=(3x) | | -5d+9d=-27 | | 30=(3x) | | -5d+9d=-27 | | 30=(3x) | | -5d+9d=-27 | | -18=-9(8x+6) | | 2×(-1)²+k×-1=0 | | 4-5n=1-5n+3 | | -29+7z=-5(8z+3) |